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Current activities:   Improvement of wheat quality and rust resistance in Indian wheat.

B.K. Das and S.G. Bhagwat.

Improvement of wheat for quality in an Indian wheat background is being carried out by using HMW-glutenin subunits 
as a selection criterion.  The rust resistance genes Sr31/Lr26/Yr9 and Sr26, Sr24/Lr24 are being combined with high 
yielding ability and specific HMW subunits.  Selected lines from several intervarietal crosses in different generations (F2, 
F3, and F4) are being evaluated.

Radiation-induced mutations in wheat.

S.G. Bhagwat, B.K. Das, and S. Bakshi.

Earlier, the cultivar C306, known for its good chapati-making quality was treated with gamma rays, and mutants with 
early flowering were isolated in the M2 generation.  The parent showed anthesis in about 75 days, whereas the mutants 
showed anthesis in 50 to 63 days.  Seven mutant lines were analysed for quality traits.  Grain-protein content ranged 
from 11.9 to 14.9% compared to 13.1% in the parent.  SDS-PAGE of total grain protein showed that the mutants had an 
unaltered HMW-glutenin subunit pattern.  Rheological properties estimated using a Brabender Farinograph showed that 
the mutant lines  had comparable water absorption, dough-development time, dough stability, degree of softening, and 
quality number.  The early mutants are being carried forward.

MP3054 and Hindi 62 were treated earlier with gamma rays.  M2-generation plants were grown in 2008-09.  
Plants that flowered early and had reduced culm length were identified as mutants and harvested individually.

A bread wheat genetic stock with morphological markers for dark glumes, hairy glumes, hairy leaf, purple culm, 
and red grain was mutagenized with gamma rays.  In the M2 generation, plants with altered morphology were identified 
and individually harvested.  The M3 was grown as plant-to-row progeny.  Although variations for the extent of glume 
pigmentation or hairiness, spike morphology, and culm length were observed, lines were found to segregate for the mu-
tant traits.

  
Validation and marker-assisted selection for rust resistance and quality-related genes in Indian 
wheat.

B.K. Das and S.G. Bhagwat.

Validation of SCAR marker SCS1302609 for gene Sr24.  Molecular markers developed for traits such as disease re-Molecular markers developed for traits such as disease re-
sistance using a specific genotype may not necessarily work in others.  Hence, validating markers in diverse genotypes 
is important.  In this study, marker SCS1302609 (Gupta et al. 2006) reported for Lr24/Sr24 was validated by analyzing 
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wheat genotypes/cultivars with wide genetic background and also in segregating populations.  PCR conditions were 
optimized by gradient PCR at different temperatures (60.3°C, 61.1°C, 61.9°C, 62.3°C, and 63°C).  The optimum an-
nealing temperature was found to be at 61°C.  Forty-one wheat genotypes were screened using the primers for SCAR 
marker SCS1302609.  The genotypes with Sr24 yielded a 607-bp band.  Wheat genotypes that were reported to carry 
other Sr genes, i.e., Sr31, Sr26, and also noncarriers of Sr24ˆ, did not amplify this marker, indicating that SCAR marker 
SCS1309609 was specific only to gene Sr24 in the Indian wheat genotypes/cultivars.

SCAR marker analysis in segregating populations.  The SCAR marker SCS1302609 also was validated by analyzing 
two segregating populations (Kalyansona/Vaishali and Kalyansona/Vidisha).  The genotypes (RR, Rr, and rr) of individ-
ual plants in the F2 generation were identified by scoring the rust reaction of respective F3 progenies.  Analysis of DNA 
from these plants using marker SCS1302609 showed that, out of the 52 resistant plants, 51 amplified the SCAR marker 
and one failed to amplify.  Of the 21 susceptible plants, 19 did not amplify the marker and two showed amplification.  
This result deviated from the expected 9:3:3:1 (Res/+:Res/–:Sus/+:Sus/–) ratio for independent assortment between the 
stem rust-resistance locus Sr24 and the SCAR marker.  Three recombinants were observed in the F2 population.  Using 
MAPMAKER (version 3.0), the distance between SCS1302609 and the Sr24 locus was estimated to be 4.3 cM.

Similarly, an F2 population from the cross ‘Kalyansona/Vidisha’ was screened for rust reaction and the presence 
of marker SCS1302609.  A total of 18 plants were screened in the F2 generation for their phenotype.  Of the 14 F2 plants 
with a resistant phenotype, five were confirmed to be homozygous and nine were confirmed to be heterozygous based on 
the phenotypes of their progenies in the F3 generation, and four F2 plants were found to be homozygous for a susceptible 
reaction.  All the resistant plants showed amplification of the SCAR marker.  All five susceptible plants did not amplify 
this marker.  The marker, therefore, was found to be suitable for screening Sr24 in early generation material.  

 Marker-assisted breeding to combe rust resistance genes Sr24 and Sr31 and Glu-D1d (coding for HMW-gluten-
in subunits 5+10) is underway in a cross between FLW-2 and Kite.  In the F2 generation, ~220 plants are being analyzed 
using SCAR markers.  Plants with both rust-resistance genes and Glu-D1d will be selected and advanced.

Marker-assisted backcrossing.  To transfer Sr24 and Glu-D1d into HD2189, marker-assisted backcross breeding 
(MAB) is being carried out.  Thirty BC3F1 plants were grown, and DNA from leaves of 4-week-old individual plants was 
extracted and screened using SCAR markers for the two genes.  In the winter of 2008–09, seven plants with both mark-
ers were identified.  Backcrosses were made using the HD2189 recurrent parent and carriers of both the markers.

Genotyping of an RIL population for variation at the Xgwm261 locus.

S. Bakshi and S.G. Bhagwat.

 A 192-bp allele at the Xgwm261 microsatellite locus is known for its association with reduced height gene Rht8 in hexa-
ploid wheat.  Indian wheat cultivars showed a predominance of 165-bp, 174-bp, and 192-bp alleles at this locus.  In our 
earlier analysis of Indian wheat cultivars, the 192-bp allele at the Xgwm261 locus did not show association with height 
reduction at the Trombay location, which is a warm environment.  An RIL population of 139 lines derived from the two 
cultivars Sonalika (165 bp) and Kalyansona (192 bp) was assayed for polymorphism at the Xgwm261 locus.  The RIL 
segregation fit a 1:1 ratio for the presence of 165-bp and 192-bp alleles.  These RILs were grown in the field at Trombay 
during the winter of 2008–09, and data for phenotypic traits of culm length (cm), spike length, spikelet number, and 
flag-leaf blade area (cm) were recorded.  Plant growth was affected by heat stress during the season.  Further analysis is 
in progress.

Genetic relationships among bread wheat genotypes with different seedling thermotolerance using 
parentage analysis, SSRs, and agronomic data.

Heat stress affects the productivity of wheat in many wheat-growing regions of India.  The tolerance of wheat plants 
to higher than optimum temperature varies at different plant-growth stages.  Seedling thermotolerance was assessed 
among 56 genotypes using membrane thermostability (MTS) and triphenyl tetrachloride tests (TTC).  Twenty genotypes 
with varying thermotolerance were selected and grown in heat stressed and non-heat stressed environments to evaluate 
their phenotypic performance.  Parentage data were used to find the degree of relationship among these genotypes.  The 
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genotypes also were subjected to an SSR analysis to find molecular similarities among the genotypes.  Further analysis is 
underway to deduce the genetic relationships and commonalities based on quantitative, parentage, and SSR data.

Wheat tissue culture.

C. Chang, P. Suprasanna, and S.G. Bhagwat.

Calli were induced from scutellum-supported embryos of immature seeds in three lines of T. turgidum subsp. dicoccum, 
two cultivars of T. aestivum subsp. aestivum, and two experimental stocks with the sphaerococcum trait.  Differences in 
growth rates of the calli from different cultivars were observed.  Calli from experimental stocks carrying the sphaero-
coccum trait were smaller than the rest.  Calli obtained from the scutellum-supported embryos of mature seeds in four 
cultivars of T. aestivum subsp. aestivum and the two experimental stocks showed that the growth rate of the calli from 
experimental stocks carrying sphaerococcum trait were significantly lower.

Calli obtained from scutellum-supported embryos of immature seeds were irradiated with gamma rays.  Three 
days after irradiation, the calli were assayed using TTC (2,3,5-triphenyl tertazolium chloride).  At 50 Gy, the reduction 
in TTC values for Unnath C306 (T. aestivum subsp. aestivum) was 9% and for DDK1029 (T. turgidum subsp. dicoccum) 
was 1%.  A 65% and 68% decrease in the TTC value of Unnath C306 and DDK1029, respectively, were observed after a 
500-Gy treatment.
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Development and use of molecular markers for wheat genomics and breeding

Construction of framework linkage map(s) using trait-specific, intervarietal RIL populations.  Three framework 
linkage maps using three mapping populations have been prepared in our laboratory for QTL interval mapping of various 


